

Question

What are the most effective methods of agriculture?

Hypothesis

If testing the effectiveness of hydroponic, vermiponic, and traditional systems, then the vermiponic system will produce the tallest and biggest plants

Independent Variable

Method of agriculture (hydroponic, vermiponic, or traditional)

Dependent Variables

Height of plants in centimeters and mass of plants in grams

Control Group

Traditional system because soil growth is the widely used method of agriculture and plant growth

Controlled Variables

Amount of light, humidity, temperature, and pH of water

Types of Agriculture

Vermiponics

Plant growth suspended over nutrient filled water in an inert growth medium

Nutrients in vermiponics are supplied by utilizing worm castings

Hydroponics

Plant growth suspended over nutrient filled water in an inert growth medium

Nutrients in hydroponics are supplied by a chemical nutrient solution

Traditional

Plant growth in soil, relying on the nutrients that already exist within the soil

Materials

- 3 plastic containers 38.8L, 86cm x 38cm x 13cm
- 20 rockwool cubes 3.8cm x 3.8cm
- 20 net pots
 7.6 cm in diameter
- 15 kg potting soil
- 1 kg clay pebbles
- Lettuce seeds

 Lactuca sativa, 1 pack
- 4 Styrofoam sheets
 40cm x 38 cm x 2cm

- 1.8 kg organic worm castings
- 2 air pumps
 with air stones and tubing
- 4 T8 grow lights
- Dyna-Gro liquid plant food
- pH control kit
 from General Hydroponics
- distilled water
- Electric timer

Procedure

Set up lights and reservoirs

- 1. Arrange reservoirs so that the long sides of the containers are touching
- 2. Hang lights above the containers to give off equal amount of light
- 3. fill one reservoir with potting soil

2 Start plants

- 1. Germinate 50 Lactuca sativa seeds in pH controlled water and 10 seeds in the soil 1 cm deep
- 2. After 1 week, transplant 20 seedlings in the cup to the rockwool cubes
- 3. After 2 weeks, transfer rockwool cubes into the systems

Mix solutions

- 1. worm tea: steep 450g of worm castings in 18L of water for 24 hours
- 2. nutrient solution: chemical nutrient to water ratio is 15ml: 4L
- 3. make enough of each solution to fill reservoirs

4) Set-up

- 1. Place air pumps into the reservoirs
- 2. Cut holes into styrofoam sheets and place the, over the reservoirs
- 3. Fill net pots with clay pebbles and a rockwool cube with a 2 week old plant inside
- 4. Place net pots into the holes in the styrofoam

Maintenance

Hydroponic and Vermiponic systems

maintain the same amount of worm tea and nutrient solution in each reservoir and test the pH of the solutions each week and adjust if needed

Traditional System

water each soil plant with approx. 80ml of water the first week and 25ml more every week

Lights

Set up an electric timer and set the light to be on for 10 hours a day and adjust the lights so that they remain 60cm above the tallest plant

Record

record the heights of the plants each week

Vermiponic Hydroponic Traditional

Heights of Lettuce Heads (cm)											
	Week#										
Trial type/#		1	2	3	4	5	6	7	8	9	10
	1	1.1	2.4	4.8	7.9	12.6	16.3	20.4	24.1	28.9	32.8
	2	1.2	3.2	6.3	10.0	15.1	19.4	24.6	29.1	33.8	Х
	3	1.4	3.7	6.5	10.8	16.2	20.8	26.2	30.5	Х	Х
	4	0.9	1.8	3.9	6.4	10.1	12.2	14.9	17.4	20.6	22.3
	5	1.3	2.2	4.2	6.9	11.3	14.2	17.8	21.5	24.9	28.7
Hydroponic	6	1.0	2.5	4.6	7.3	11.9	15.0	18.9	22.6	26.8	30.5
	7	1.0	2.8	5.4	9.2	13.6	17.1	22.7	27.3	30.1	Х
	8	1.1	2.2	4.0	7.0	10.5	13.7	17.8	21.5	23.6	27.2
	9	1.5	3.9	7.2	11.4	17.7	22.3	27.6	31.4	Х	Х
	10	1.4	3.2	6.6	9.6	15.0	18.9	23.8	27.3	32.5	Х
	average	1.2	2.8	5.4	8.7	13.4	17.0	21.5	25.4	27.5	28.3
	1	1.4	2.8	4.6	6.2	9.3	12.5	15.1	17.8	20.9	23.4
	2	1.1	2.5	4.1	5.4	7.7	10.9	12.8	15.3	17.9	20.1
	3	1.4	2.6	6.5	10.4	15.8	19.9	23.5	26.7	29.5	31.3
	4	1.5	3.9	7.0	11.3	16.4	21.0	25.3	28.9	31.2	Х
	5	1.2	2.4	5.7	8.3	11.7	15.5	18.1	21.7	25.0	28.7
Vermiponic	6	1.0	2.2	4.9	7.5	10.9	14.7	17.6	19.3	22.7	26.6
	7	1.3	2.6	4.2	6.9	10.0	13.9	16.3	18.8	21.2	24.3
	8	1.2	2.3	3.9	5.2	7.2	10.3	13.4	15.7	17.4	19.2
	9	1.4	2.9	4.2	6.6	8.8	12.3	15.1	17.7	19.9	22.8
	10	1.3	3.4	6.8	9.9	14.1	18.4	22.6	26.4	30.3	Х
	Average	1.3	2.8	5.2	7.8	11.2	14.9	18.0	20.8	23.6	25.7
Soil	1	1.1	2.4	3.2	5.2	6.6	8.3	10.7	11.8	13.0	15.1
	2	1.5	2.2	4.0	6.5	8.2	10.3	12.6	14.8	16.2	18.4
	3	1.3	2.6	3.8	5.8	6.9	9.4	11.0	12.8	14.1	16.7
	4	1.0	2.1	3.4	4.6	5.4	6.3	8.0	9.7	11.1	12.5
	5	1.2	2.5	3.8	6.0	8.1	10.4	12.8	15.1	16.2	17.3
	6	0.9	1.9	3.7	5.6	6.7	9.1	10.6	12.1	14.5	16.2
	7	1.1	2.4	3.1	4.7	5.9	7.3	8.4	9.6	10.3	11.0
	8	1.4	2.2	3.4	4.5	5.6	6.5	7.6	9.2	10.9	12.8
	9	1.0	2.8	3.9	6.2	7.9	10.0	11.7	13.2	15.4	17.5
	10	1.6	2.6	3.7	5.9	7.3	9.2	10.9	12.4	14.5	16.3
	average	1.2	2.4	3.6	5.5	6.9	8.7	10.4	12.1	13.6	15.4

Average Heights of Lettuce in cm												
	Week#											
	1	2	3	4	5	6	7	8	9	10		
Hydroponic	1.2	2.8	5.4	8.7	13.4	17.0	21.5	25.4	27.5	28.3		
Vermiponic	1.3	2.8	5.2	7.8	11.2	14.9	18.0	20.8	23.6	25.7		
Soil	1.2	2.4	3.6	5.5	6.9	8.7	10.4	12.1	13.6	15.4		

Mass of Lettuce Heads in grams											
trial	1	2	3	4	5	6	7	8	9	10	average
Hydroponic	436	450	406	297	382	406	400	362	418	432	399
Vermiponic	311	267	416	415	382	354	323	255	303	403	343
Soil	196	239	217	163	225	211	143	166	228	212	200

Data Tables

Heights of Lettuce Plants

Heights of Soil Lettuce Heads

Average Height of Lettuce Heads

Mass of Lettuce Heads

Hydroponic
 Vermiponic
 Soil dotted lines are averages

Statistical Analysis

Hydroponics

Mean: 398.9

Standard Deviation: 44.19766

Variance: 1953.433

n- value: 10

Traditional

Mean: 200

Standard Deviation: 32.10054

Variance: 1030.444

n-value: 10

Vermiponics

Mean: 342.9

Standard Deviation: 59.90632

Variance: 3588.767

n-value: 10

Student T-Test (1 tail, unpaired)

Hydroponics and Traditional;

T-value = 11.51448; P= 0.00000001389

Vermiponics and Traditional;

T-value=6.64887; P= 0.00000595636

Alternative Agriculture

The data is statistically significant

The probability that the data occurred by chance for either set of data is less than 5%, so the null hypothesis can be rejected

Both methods of alternative agriculture produce bigger plants

The average masses of the hydroponic and vermiponic plants are significantly higher than the traditional plants

The hypothesis was disproven

Although both methods of alternative agriculture produced plants that were significantly larger than the soil plants, the hydroponic system was more effective than the vermiponic system

Benefits of alternative agriculture

saves water, space, time, and the environment by preventing chemical runoff

Ideal in many conditions

places with a lack of water, space, or fertile soil can benefit such as large cities, Arctic exploration, Mars, or long-term space expeditions